COUPLING AN ADVANCED LAND SURFACE PROCESS MODEL WITH A NONHYDROSTATIC ATMOSPHERIC MODEL

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land - atmosphere COz exchange simulated by a land surface process model coupled to an atmospheric general circulation model

CO2 uptake during plant photosynthesis and CO2 loss during plant and microbial respiration were added to a land surface process model to simulate the diurnal and annual cycles of biosphere-atmosphere CO2 exchange. The model was coupled to a modified version of the National Center for Atmospheric Research Community Climate Model version 2, and the coupled model was run for 5 years. The geographi...

متن کامل

A multi-layer land surface energy budget model for implicit coupling with global atmospheric simulations

In Earth system modelling, a description of the energy budget of the vegetated surface layer is fundamental as it determines the meteorological conditions in the planetary boundary layer and as such contributes to the atmospheric conditions and its circulation. The energy budget in most Earth system models has been based on a big-leaf approach, with averaging schemes that represent in-canopy pr...

متن کامل

An unstructured-mesh atmospheric model for nonhydrostatic dynamics

A three-dimensional semi-implicit edge-based unstructured-mesh model is developed that integrates nonhydrostatic anelastic equations, suitable for simulation of small-to-mesoscale atmospheric flows. The model builds on nonoscillatory forwardin-time MPDATA approach using finite-volume discretization and admitting unstructured meshes with arbitrarily shaped cells. The numerical advancements are e...

متن کامل

A Vertical Splitting Scheme for Nonhydrostatic Atmospheric Model

In this study, a numerical solution of nonhydrostatic atmospheric equations is considered. A robust semi-implicit approach with additional time splitting is applied in order to construct computationally efficient and accurate numerical scheme for modeling of large-scale atmospheric dynamics. Description of the designed numerical algorithm is provided and its accuracy and stability are discussed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PROCEEDINGS OF HYDRAULIC ENGINEERING

سال: 2004

ISSN: 0916-7374,1884-9172

DOI: 10.2208/prohe.48.127